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Abstract. The inertial effects on neutrino oscillations induced by the acceleration and angular velocity
of a reference frame are calculated. Such effects have been analyzed in the framework of the solar and
atmospheric neutrino problem.

1 Introduction

The long-standing problem of solar neutrino deficiency,
i.e., the discrepancy between the measured νe flux pre-
dicted by various solar models [1,2] and the atmospheric
neutrino problem [3], might be explained by the invocation
of oscillations between the various flavors or generations
of neutrinos. It is well known, in fact, that neutrino os-
cillations [4] can occur in the vacuum if the eigenvalues
of the mass matrix are not all degenerate and the cor-
responding mass eigenstates are different from weak in-
teraction eigenstates νe, νµ, ντ . The most often discussed
version of this type of solution is the Mikheyev–Smirnov–
Wolfeinstein (MSW) effect [5], in which the solar electron
neutrinos can be almost completely converted into muon
or tau neutrinos, because of the presence of matter in the
Sun. Recently a quantum field theory of neutrino oscil-
lations has been proposed by Blasone, Vitiello [6], and
Sassaroli [7].

An alternative mechanism of neutrino oscillations,
which does not require the neutrino to have a nonzero
mass, was first suggested by Gasperini [8] and by Halprin
and Leung [9] as a means to test the equivalence princi-
ple. In this mechanism, neutrino oscillations occur as a
consequence of an assumed flavor-nondiagonal coupling of
neutrinos to gravity that violates the equivalence princi-
ple. This line of research has been followed also in [10].
A new solution of the solar neutrino problem proposed
in [11] uses the mechanism introduced by Ellis, Hagelin,
Nanopoulos, and Srednicki [12], who investigate the effect
on neutrino oscillation of quantum mechanics violation
due to quantum gravity on neutrino oscillation.

The effect of gravitationally induced quantum mechan-
ical phases in neutrino oscillation has been discussed in
[13]. Ahluwalia and Burgard consider the gravitational
effect on neutrino oscillations, showing that an external
weak gravitational field of a star adds a new contribution
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to the phase difference. They also suggest that the new os-
cillation phase may have a significant effect on supernova
explosions, since the extremely large fluxes of neutrinos
are produced with different energies corresponding to the
flavor states. This result has been also discussed by Bhat-
tachya, Habib, and Mottola [14]. In their approach, they
found that the possible gravitational effect appears at a
higher order than that calculated in [13], having a magni-
tude of the order 10−9, which is completely negligible in
typical astrophysical applications.

Neutrino oscillations in curved space-time have also
been studied by Piniz, Roy, and Wudka [15], who observe
that spin flavor resonant transitions of neutrinos may oc-
cur in the vicinity of active galactic nuclei because of grav-
itational effects and the presence of a large magnetic field,
and by Cardall and Fuller [16] who introduce an approach
which shows that gravitational (e.g., Schwarzschild field)
effects on neutrino oscillations are intimately related to
the redshift.

The purpose of this paper is to calculate the contribu-
tion to neutrino oscillations induced by inertial effects aris-
ing from the acceleration and rotation of reference frames.
As well known, these effects are relevant in interferome-
try experiments. In fact, by using an accelerated neutron
interferometer, Bonse and Wroblewski were able to find
the predicted phase shift [17]. Because of the validity of
the equivalence principle, one expects that this effect oc-
curs also in a gravitational field, as is verified by Colella,
Overhausen, and Werner [18]. In addition, Mashhoon has
derived a coupling of neutron spin to the rotation of a
noninertial reference frame [19] from an extension of the
hypothesis of locality; Atwood, et al. found the neutron
Sagnac effect using an angular velocity of about 30 times
that of Earth [20]; and finally, Papini, Cai, and Lloyd
calculate the spin-rotation and spin-acceleration contri-
butions to the helicity precession of fermions [21].

At present, there is strong evidence in favor of oscil-
lations of solar and atmospheric neutrinos and of their
nonzero masses. Such results have been found in differ-
ent experiments: (1) solar neutrino experiments [22–26],
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(2) atmospheric neutrino experiments [27–31], and (3) the
accelerator LSND experiment [32]. Nevertheless, we have
to note that many other neutrino oscillation experiments
with neutrinos produced by reactors and accelerators have
not found any evidence of neutrino oscillations.

Recent reports indicate that the best fits in favor of
neutrino oscillations are obtained for the following cases
[33]:
(MSW) small-angle mixing region,

|m2
2−m2

1| ' (3–10)×10−6 eV2 , sin2 2θ ' (0.6–1.3)×10−2 ;

(MSW) large-angle mixing region
|m2

2 −m2
1| ' (1–20) × 10−5 eV2 , sin2 2θ ' 0.5–0.9 ;

solar-vacuum oscillation

|m2
2 −m2

1| ' (0.5–1.1) × 10−10 eV2 , sin2 2θ ' 0.67/1 ;

atmospheric neutrino oscillation (see also [34,35])
|m2

2 −m2
1| ' (10−3–10−2) eV2 , sin2 2θ ≥ 0.8 ,

|m2
2 −m2

1| ' (0.5–6) × 10−3 eV2 , sin2 2θ ≥ 0.82 ;

LSND experiment
|m2

2 −m2
1| ' (0.2–10) eV2 , sin2 2θ ' (0.2–3) × 10−2 .

The term |m2
2 −m2

1| is the mass-squared difference of
neutrinos, and θ is the mixing angle. In the following we
will consider only the case of solar and atmospheric neu-
trino oscillations in the vacuum.

The layout of the paper is the following. In Sect. 2,
we discuss the Dirac equation in curved space-time, and
we calculate the probability that neutrino flavor oscilla-
tions occur with respect to an accelerating and rotating
observer. In Sect. 3, we discuss the phenomenological con-
sequences of inertial effects on the solar and atmospheric
neutrino problem. Conclusions are drawn in Sect. 4.

2 Neutrino oscillations induced by
accelerations and rotations

As in [16], the generalized neutrino phase is given by

|ψf (λ)〉 =
∑

j

Ufje
i
∫ λ

λ0
P ·pnulldλ′

|νj〉 , (1)

where f is the flavor index and j the mass one. Ufj are
the matrix elements transforming flavor and mass bases,
P is the four-momentum operator generating space-time
translation of the eigenstates, and pµ

null = dxµ/dλ is the
tangent vector to the neutrino worldline xµ, parameterized
by λ. The covariant Dirac equation in curved space-time
[36] is [iγµ(x)Dµ − mc/h̄]ψ = 0; the matrices γµ(x) are
related to the usual Dirac matrices γâ by means of the
vierbein fields eâ

µ(x), in which the Greek (Latin with hat)
indices refer to curved (flat) space-time. Dµ is defined as
Dµ = ∇µ + Γµ(x), in which ∇µ is the usual covariant
derivative and Γµ(x) is the spinorial connection defined
by

Γµ(x) =
1
8
[γâ, γ b̂]eν

âeνb̂;µ ,

(the semicolon delimits the covariant derivative). The
relations

γâ[γ b̂, γ ĉ] = 2ηâb̂γ ĉ − 2ηâĉγ b̂ − 2iεd̂âb̂ĉγ5γd̂ ,

where ηâb̂ is the metric tensor in flat space-time, εd̂âb̂ĉ

is the totally antisymmetric tensor, γ5 = iγ0̂γ1̂γ2̂γ3̂, and
{γ5, γâ} = 0, allow us to recast the nonvanishing contri-
bution from the spin connection in the form

γâeµ
âΓµ = γâeµ

â

{
iAGµ

[
−(−g)−1/2 γ

5

2

]}
, (2)

where
Aµ

G =
1
4
√−geµ

âε
d̂âb̂ĉ(eb̂µ;σ − eb̂σ;ν)eν

ĉ e
σ
d̂
, (3)

and g ≡ det(gµν). gµν is the metric tensor of curved space-
time. The momentum operator Pµ, used to calculate the
phase of neutrino oscillations, is derived from the mass
shell condition

(Pµ + h̄AGµγ
5)(Pµ + h̄Aµ

Gγ
5) = −M2

f c
2 , (4)

where M2
f is the vacuum mass matrix in flavor base

M2
f = U

(
m2

1 0
0 m2

2

)
U† , U =

(
cos θ sin θ

− sin θ cos θ

)
. (5)

θ is the vacuum mixing angle. Ignoring terms of the order
O(h̄2A2

G) and O(h̄AGMf ), one finds that for relativistic
neutrinos moving along generic trajectories parameterized
by λ, the column vector of flavor amplitude

χ(λ) =

(
〈νe|ψ(λ)〉
〈νµ|ψ(λ)〉

)
(6)

satisfies the equation

i
dχ
dλ

=

(
M2

f c
2

2
+ h̄p ·AGγ

5

)
χ . (7)

In deriving (7), one uses the relation P 0 = p0 and
P i ≈ pi [16]. In an accelerating and rotating frame, the
vierbein fields eâ

µ(x) are given by [37]

e0̂0 = 1 +
~a · ~x
c2

, e0̂m = 0 , ek̂
0 = εk̂l̂m̂ωl̂xm̂ , ek̂

l = δk
l ,

(8)
where k, l,m = 1, 2, 3, xµ = (x0, ~x) are the local coordi-
nates for the observer at the origin, and ~a, ~ω are the ac-
celeration and angular velocity of the frame, respectively.
The components eµ

â(x) and eµâ(x) are calculated by the
use of the metric tensors gµν and ηâb̂, with gµν determined
by the element line [37]

ds2 =

[(
1 +

~a · ~x
c2

)2

+
(
~ω · ~x
c

)2

− (~ω · ~ω)(~x · ~x)
c2

]
(dx0)2

−2dx0d~x · (~ω ∧ ~x)
c

− d~x · d~x . (9)

Inserting (8) into (3), one gets the components of Aµ
G,

A0
G = 0 , ~AG =

√−g
2

1
1 + ~a·~x

c2

{
2
~ω

c
− 1
c2

[~a ∧ (~x ∧ ~ω)]
}
,

(10)
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so that (7) becomes

i
d
dλ

(
ae

aµ

)
= T

(
ae

aµ

)
(11)

where af ≡ 〈νf |ψ(λ)〉, f = e, µ, and the matrix T is de-
fined as

T =

[
−(∆/2) cos 2θ (∆/2) sin 2θ − h̄~p · ~AG

(∆/2) sin 2θ − h̄~p · ~AG (∆/2) cos 2θ

]

(12)
up to the (m2

1 +m2
2)c

2/2 term, proportional to the iden-
tity matrix. Here ∆ ≡ (m2

2 − m2
1)c

2/2. We restrict this
analysis to flavors e, µ, but the analysis works also for dif-
ferent neutrino flavors. To determine the mass eigenstates
|ν1〉 and |ν2〉, corresponding to a fixed value of the accel-
eration and angular velocity of the frame (i.e., for a fixed
value of the affine parameter λ), one has to diagonalize the
matrix T . Using the standard procedure, one writes the
mass eigenstates as a superposition of flavor eigenstates,

|ν1(λ)〉 = cos θ̃(λ)|νe〉 − sin θ̃(λ)|νµ〉 ,
|ν2(λ)〉 = sin θ̃(λ)|νe〉 + cos θ̃(λ)|νν〉 , (13)

where the mixing angle θ̃ is defined in terms of the vacuum
mixing angle

tan 2θ̃ =
∆ sin 2θ − 2h̄~p · ~AG

∆ cos 2θ
. (14)

We note that θ̃ → θ as ~AG → 0 (i.e., ~a → 0, ~ω → 0).
The corresponding eigenvalues are

τ1,2 = ±
√
∆2

4
cos2 2θ +

[
∆

2
sin 2θ − (~p · ~AG)

]2
. (15)

We set |ψ(λ)〉 = a1(λ)|ν1〉 + a2(λ)|ν2〉, and (11) as-
sumes the form

i
d
dλ

(
a1

a2

)
=

(
τ1 0
0 τ2

)(
a1

a2

)
, (16)

where ai = 〈νi|ψ(λ)〉, i = 1, 2, and(
a1

a2

)
= Ũ

(
ae

aµ

)
, Ũ =

(
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

)
. (17)

We have used the condition dθ̃/dλ ≈ 0 in order that
(16) is a diagonal matrix. This means that we neglect
the variations of acceleration and angular velocity, with
respect to the affine parameter λ, in comparing to their
magnitudes. Equation (16) implies ai(λ) = ai(0) expα(λ),
α(λ) ≡ i

∫ λ

λ0
τidλ′, i = 1, 2. For the initial condition

|ψ(0)〉 = |νe〉, the state |ψ(λ)〉 is

|ψ(λ)〉 = [cos θ0 cos θ̃eiα + sin θ0 sin θ̃e−iα]|νe〉 +

[− cos θ0 sin θ̃eiα + sin θ0 cos θ̃e−iα]|νµ〉 , (18)

where θ0 = θ̃(λ0). The probability of observing an elec-
tronic neutrino is therefore
|〈νe|ψ(λ)〉|2 = cos2(θ0 + θ̃) sin2 α+ cos2(θ0 − θ̃) cos2 α .

(19)
Equation (19) shows that accelerating and rotating ob-

servers will experience a flavor oscillation of neutrinos.

Table 1. Estimation of |m2
2 −m2

1| as function of Eν , sin 2θ and
fixed value of ωc.

Eν(MeV) sin 2θ |m2
2 − m2

1|(eV2)
1 1 10−13

1 10−1 10−12

10 1 10−12

10 10−1 10−11

50–60 1 10−10

From the equivalence principle, one concludes that grav-
itational fields can induce neutrino oscillations; this is in
agreement with [8]–[16]. It is interesting to discuss some
particular case, e.g., frame acceleration or rotation, in or-
der to estimate the contributions to neutrino oscillations
when inertial effects are taken into account.

3 Inertial effects on solar
and atmospheric neutrinos

Consequences on neutrino oscillations can be derived from
(12) and (14). Let us suppose that the linear acceleration
is zero, ~a = 0, and the reference frame is rotating. In this
situation, one can define a critical angular velocity ωc such
that the off-diagonal matrix elements of (12) vanish:

∆ sin 2θ ≈ 2h̄
c
~ωc · ~p . (20)

For ultrarelativistic neutrinos, Eν ∼ pc, (20) reduces
to

|m2
2 −m2

1| ≈ 4h̄Eνωc

sin 2θ
. (21)

This formula connects the mass-squared difference of
neutrinos to the vacuum mixing angle, the neutrino en-
ergy, and the (critical) angular velocity of the reference
frame. In order to determine the consequences of (21) for
the solar neutrino problem (vacuum oscillations), we as-
sume that the reference frame comoves with the Earth,
i.e., its angular velocity is ωc ∼ 7 × 10−5 rad/sec. Results
for typical values of the neutrino energies and vacuum
mixing angle are reported in Table 1. The agreement with
the experimental data comes from neutrinos with energy
varying in the range 10–60 MeV. In this range, we find a
mass-squared difference of the order 10−12– 10−10 eV2 for
the vacuum mixing angle 10−1 ≤ sin 2θ ≤ 1. In addition,
we observe that an extreme value of θ̃ as function of θ (14)
is

θ̃ = θ +
π

4
. (22)

On the other hand, the adiabatic condition (20) im-
plies θ̃ ≈ 0 (which gives standard results) or θ̃ ≈ π/2,
which fixes the vacuum mixing angle to approximately to
θ ≈ π/4, as is expected by experimental results for solar
neutrinos.

The value θ̃ ≈ π/2 induces a conversion phenomena
for which the flux of the νe component decreases. To be
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more specific: after the production of electronic neutri-
nos in the Sun, we have |ψ(0)〉 = |νe〉 (θ0 = 0). Evolv-
ing along its worldline, the νe component will oscillate in
agreement with (13). Nevertheless, if condition (14) holds
and θ̃ ≈ π/2, the probability (19) to find νe in the beam
decreases from 1 to sin2 θ0 ≈ 0. This result shows that the
νe component of the beam is almost totally depleted with
respect to the rotating observer with angular velocity ωc,
resulting in a reduction of solar neutrino flux.

Concerning the atmospheric neutrino oscillation, an
appreciable value of |m2

2 − m2
1| requires highly (multiple

GeV) energetic neutrinos. In fact, (21) implies |m2
2−m2

1| ∼
10−4 eV2, for Eν ∼ 104 GeV and sin 2θ ∼ 10−2. This value
of the mixing angle is excluded (at least for now) by ex-
perimental data. When sin2 2θ ≥ 0.82 is used, according
to the experimental results, (21) leads to a mass-squared
difference of the order 10−6 eV2, which does not fit the
experimental range 10−4–10−3 eV2.

In the regime in which neutrinos are highly energetic,
so that the condition ~p · ~AG � ∆ sin 2θ holds, (14) implies
θ̃ ≈ π/4, and the probability to find the νe component in
the neutrino beam is ≈ 1/2, assuming as an initial con-
dition |ψ(0)〉 = |νe〉, θ0 = 0. Highly energetic neutrinos,
with energy of the order 1–103 TeV can be produced, for
example, by a supernova [15].

It is interesting to compare the contribution to neu-
trino oscillations due to the rotation term with that due
to the massive term. Being that p ·AG = −(

√−g/c)~ω · ~p,
(7) implies, for ultrarelativistic neutrinos,

ω ∼ 1
2
m2

νc
4

h̄Eν
. (23)

If we consider neutrinos with energy Eν ∼ 1 TeV em-
anating from active galactic nuclei [15], which are possi-
ble sources of high- energy signals being the most lumi-
nous objects in the universe [38], then for mν ∼ 1 eV/c2
[15,40], the angular velocity is of the order ω ∼ 102–103

rad/sec. Moreover, one expects that the neutrino mass is
of the order mν ∼ 10−2–10−4 eV/c2 [41],[42]. At energy
Eν ∼ 10–102 GeV produced by accelerators [39], one gets
ω ∼ 1.2–10−5 rad/sec.

Some values of the angular velocity, calculated by using
(23) for different (and expected) values of neutrino masses
and energies, are reported in Table 2. It turns out that
these values are of the same order of magnitude as the
typical angular velocity of astrophysical objects (Table 3).
For example, the angular velocity ω ∼ 102–103 rad/sec is
comparable with that of pulsars [43]. In addition, ω ∼
10−5 rad/sec is of the same order of angular velocity of
the Earth, and it is about 10 times the angular velocity of
the Sun: ωSun ∼ 10−6 rad/sec.

In the case in which the acceleration ~a is constant and
~ω = 0, the p · AG term in (7) vanishes, and one finds a
shift of the phase: Ω = i

∫ λ

λ0
P · pnulldλ′, as defined in (1).

In fact, since the neutrino trajectory is null and gµν is
diagonal (

√−g = 1+(~a ·~x)/c2), the physical distance can
be written as

Table 2. Angular velocity of reference frames for different val-
ues of neutrino masses and energies.

mν(eV/c2) Eν(GeV) ω(rad/sec)
1 103–10−1 102–106

10−2 103–10−1 10−2–102

10−4 103–10−1 10−6–10−2

Table 3. Typical angular velocity of Astrophysical objects.

Astrophysical Objects ω(rad/sec)[43]
Pulsar 4 × 103

Sun 10−6

Earth 10−5

White dwarf 2.1
RR Lyrae Star 10−5

Cepheid Variable 10−7

dλ = dl
(
gij

dxi

dλ
dxj

dλ

)−1/2

= dl

[
−g00

(
dx0

dλ

)2
]−1/2

,

(24)
and one gets [16]

Ω = −M2

2E∗

∫ l

l0

1
1 + (~a · ~x)/c2 dl′ , (25)

where E∗ = Pt is the conserved quantity due to the non
dependence of the metric tensor on the timelike coordi-
nates. If ~a ‖ ~x, then dl = dr, and (25) reduces to

Ω = − M2c2

2E∗|~a| ln(1 + |~a|r/c2) ,

for r0 ≡ r(l0 = 0) = 0. If ~a ⊥ ~x, (25) gives the standard
result Ω = −(M2c2/(2E∗)(λ− λ0).

4 Conclusions

We have analyzed the phenomenological aspects of neu-
trino oscillations for an accelerating and rotating observer.

The inertial effects on neutrino oscillations seem to
be appreciable in the solar neutrino problem. The cou-
pling of the angular velocity and momentum of the neu-
trino implies a reduction of neutrino flux as experienced
by an observer comoving with the Earth, providing us
with valuable information on the mass-squared difference
and mixing angle of neutrinos. In fact, we find good agree-
ment between the experimental data [34] and our estima-
tions of the mass-squared differences. They fit well the
experimental data for neutrino beams with energies of the
order 10–60 MeV. For these estimations, we have used
sin 2θ ∼ 1–10−1, values coming from the data of solar
neutrino oscillation experiments.

In the framework of atmospheric neutrinos, inertial ef-
fects seem to be negligible. The best fit of experimental
data that we reproduce, if the adiabatic condition holds, is
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for highly energetic neutrinos. In fact, we get a value of the
mass-squared difference of the order 10−4 eV2, requiring
a mixing angle sin 2θ ∼ 10−2.

However, we note that values of the mass-squared dif-
ference of neutrinos and their mixing angle have been until
now open issues. Only future neutrino oscillation exper-
iments will make it possible to investigate in detail the
region |m2

2 −m2
1| and to fix the value of the mixing angle.

These data will allow the definitive solution the solar and
atmospheric neutrino problems and an understanding of
whether inertial effects are important for explaining the
deficit of solar and atmospheric neutrino flux.
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